

Gleniffer High School

Higher

Electricity

Summary Notes

Name:

Higher - Electricity - Summary Notes

Monitoring and Measuring Alternating Current

An a.c. supply produces a flow of charge in a circuit that regularly reverses direction. The symbol for an a.c. supply is shown below:-

An a.c. supply would produce a trace that shows alternating peaks and troughs.

The maximum voltage is called the peak value.
From the graph it is obvious that the peak value would not be a very accurate measure of the voltage available from an alternating supply.

In practice the value quoted is the root mean square (r.ms.) voltage.
The r.ms. value of an alternating voltage or current is defined as being equal to the value of the direct voltage or current which gives rise to the same heating effect (same power output).

Consider the following two circuits which contain identical lamps.

The variable resistors are altered until the lamps are of equal brightness. As a result the direct current has the same value as the effective alternating current (i.e. the lamps have the same power output). Both voltages are measured using an oscilloscope giving the voltage equation below. Also, since V=IR applies to the r.m.s. valves and to the peak values a similar equation for currents can be deduced.

$$
\mathrm{V}_{\text {r.m.s. }}=\frac{1}{\sqrt{2}} \mathrm{~V}_{\text {peak }} \text { and } \quad \mathrm{I}_{\text {r.m.s. }}=\frac{1}{\sqrt{2}} \mathrm{I}_{\text {peak }}
$$

An oscilloscope can be used to find the frequency of an a.c. supply as shown below.

$$
\begin{aligned}
& \text { Time base }=0.005 \mathrm{~s} \mathrm{~cm}^{-1} \\
& \begin{aligned}
& \text { Wavelength }=4 \mathrm{~cm} \\
& \text { Time to produce one wave }=4 \times 0.005 \\
&=0.02 \mathrm{~s}
\end{aligned} \\
& \begin{aligned}
\text { Frequency } & =\frac{1}{\text { time to produce one wave }} \\
\qquad & =\frac{1}{0.02}=50 \mathrm{~Hz}
\end{aligned}
\end{aligned}
$$

The table below contains the details of the Past Paper examples for this area of the course. Past Papers, and their solutions, are free to download from the SQA website.

Year	Section/Paper One	Section/Paper Two
2015	17 and 18	No examples
2016	17	No examples
2017	16	No examples
2018	No examples	12 a)i), a)ii) and b)
2019	20 and 21	No examples

Higher - Electricity - Summary Notes

Current, Potential Difference, Power and Resistance

Current and Potential Difference or Voltage in Parallel Circuits
The potential difference across components in parallel is the same for all components.
The sum of the currents in parallel branches is equal to the current drawn from the supply.

$$
V_{1}=V_{2}
$$

$$
\mathbf{I}_{\mathrm{S}}=\mathbf{I}_{\mathrm{A}}+\mathbf{I}_{\mathrm{B}}
$$

Electrical Resistance

Resistance is a measure of the opposition of a circuit component to the flow of charge or current through that component. The greater the resistance of a component, the less will be the current through that component.
All normal circuit components have resistance and the resistance of a component is measured using the relationship

$$
\begin{array}{lll}
\mathrm{R}=\frac{\mathbf{V}}{\mathbf{I}} \text { or } \quad \mathrm{V}=\mathbf{I} \mathbf{R} \quad \begin{array}{l}
\mathrm{R}=\text { resistance } \\
\mathrm{V}=\text { potential difference (voltage) } \\
\mathrm{I}=\text { current }
\end{array}
\end{array}
$$

Resistance is measured in ohms, Ω.
Potential difference (or voltage) is measured in volts, \mathbf{V}.
Current is measured in amperes, \mathbf{A}.
This relationship is known as Ohm's Law, named after a German physicist, Georg Ohm. For components called resistors, the resistance remains approximately constant for different values of current therefore the ratio $\mathrm{V} / \mathbf{I}(=\mathrm{R})$ remains constant for different values of current.
Example
Calculate the resistance of the resistor in the diagram opposite.
Ensure that all quantities are stated in the correct units.
$R=$?
$V=5 \mathrm{~V}$
$I=200 \mathrm{~mA}=0.2 \mathrm{~A}$

$$
R=\frac{V}{I}=\frac{5}{0.2}=25 \Omega
$$

Higher - Electricity - Summary Notes

Resistors in Series

When more than one component is connected in series, the total resistance of all the components is equivalent to one single resistor, R_{T}, calculated using the relationship

$$
\mathbf{R}_{\mathrm{T}}=\mathrm{R}_{\mathbf{1}}+\mathrm{R}_{2}+\mathrm{R}_{3}
$$

For the following circuit with three components in series,

The above relationship is true for two or more components connected in series.

Resistors in Parallel

When more than one component is connected in parallel, the total resistance of all the components is equivalent to one single resistor, R_{T}, calculated using the relationship

$$
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}
$$

A typical parallel circuit is shown below.

By applying the parallel resistors relationship it can be shown that the total resistance for this circuit is 8.8Ω.

Example 1 Components in series

Calculate the total resistance of the circuit opposite.
$R_{1}=10 \Omega$
$R_{2}=50 \Omega$
$R_{3}=25 \Omega$

$$
\begin{aligned}
& R_{T}=R_{1}+R_{2}+R_{3} \\
& R_{T}=10+50+25=85 \Omega
\end{aligned}
$$

Example 2 Components in parallel
Calculate the total resistance of the components above when connected in parallel.
$R_{1}=10 \Omega$
$R_{2}=50 \Omega$
$R_{3}=25 \Omega$

$$
\begin{aligned}
\frac{l}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{l}{R_{3}} & =\frac{1}{10}+\frac{1}{50}+\frac{1}{25} \\
& =\frac{5}{50}+\frac{1}{50}+\frac{2}{50}=\frac{8}{50} \\
\frac{1}{R_{T}}=\frac{8}{50} \text { therefore } \frac{R_{T}}{1} & =\frac{50}{8} \quad R_{T}=6.5 \Omega
\end{aligned}
$$

For components in series, R_{T} is always greater than the largest resistance. For components in parallel, R_{T} is always less than the smallest resistance.

Example 3

Find the total resistance of the following resistor combination.

Firstly, deal with the parallel combination.

$$
\begin{gathered}
\mathrm{R}_{\mathrm{T}}=? \quad \mathrm{R}_{1}=6 \Omega \quad \mathrm{R}_{2}=12 \Omega \quad \mathrm{R}_{3}=3 \Omega \\
\frac{\mathbf{1}}{\mathrm{R}_{\mathrm{T}}}=\frac{\mathbf{1}}{\mathrm{R}_{\mathbf{1}}}+\frac{\mathbf{1}}{\mathrm{R}_{\mathbf{2}}}+\frac{\mathbf{1}}{\mathrm{R}_{3}} \\
1 / \mathrm{R}_{\mathrm{T}}=1 / 6 \quad+\quad 1 / 12+\quad+\quad 1 / 3 \\
1 / \mathrm{R}_{\mathrm{T}}=2 / 12+\quad+\quad 1 / 12 \quad+\quad 4 / 12 \\
1 / \mathrm{R}_{\mathrm{T}}=7 / 12 \\
\mathrm{R}_{\mathrm{T}}=1.7 \Omega
\end{gathered}
$$

Now apply the rule for resistors in series

$$
\begin{gathered}
\mathbf{R}_{\mathrm{T}}=\mathrm{R}_{\mathbf{1}}+\mathrm{R}_{\mathbf{2}}+\mathrm{R}_{3} \\
\mathrm{R}_{\mathrm{T}}=5+1.7+8 \\
\mathrm{R}_{\mathrm{T}}=14.7 \Omega
\end{gathered}
$$

Higher - Electricity - Summary Notes

Potential Divider Circuits

A potential divider is a device or a circuit that uses two (or more) resistors or a variable resistor (potentiometer) to provide a fraction of the available voltage (p.d.) from the supply.

Fixed Resistance

Variable Resistance

The p.d. from the supply is divided across the resistors in direct proportion to their individual resistances.
Take the fixed resistance circuit - this is a series circuit therefore the current in the same at all points.

$$
\begin{array}{ll}
\mathrm{I}_{\text {supply }}=\mathrm{I}_{1}=\mathrm{I}_{2} & \text { where } \mathrm{I}_{1}=\text { current through } \mathrm{R}_{1} \\
& \text { and } \mathrm{I}_{2}=\text { current through } \mathrm{R}_{2}
\end{array}
$$

Using Ohm's Law:

Example

Calculate the output p.d., $V_{\text {out }}$ from the potential divider circuit shown.
$\begin{array}{ll}V_{\text {out }}=? \\ R_{1}=10 \mathrm{k} \Omega\end{array} \quad V_{1}=V_{\text {out }}=\frac{R_{1}}{R_{1}+R_{2}} \times V_{S}$
$R_{2}=15 \mathrm{k} \Omega$
$V_{S}=20 \mathrm{~V}$
$=\frac{10}{10+15} \times 20$
$V_{\text {out }}=8 \mathrm{~V}$

Higher - Electricity - Summary Notes

Wheatstone Bridge Circuit

When two potential dividers are connected in parallel as shown below it is known as a Wheatstone Bridge circuit.

The voltmeter measures the potential difference between the two midpoints of the parallel branches. If the voltmeter reads 0 V the bridge circuit is said to be balanced. This will happen when the ratios of the resistors in the circuit are equal.

$$
\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{4}}
$$

This bridge arrangement is often used to find the value of an unknown resistor and can be drawn in a diamond formation.

Thus assuming the galvanometer (a sensitive meter) has a zero reading we can apply the above equation.

$$
\begin{aligned}
\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} & =\frac{\mathrm{R}_{3}}{\mathrm{R}_{4}} \\
10 / 25 & =3.6 / \mathrm{R}_{\mathrm{x}} \\
\mathrm{R}_{\mathrm{x}} & =9.0 \mathrm{k} \Omega
\end{aligned}
$$

The table below contains the details of the Past Paper examples for this area of the course. Past Papers, and their solutions, are free to download from the SQA website.

This area appears to have very few examples, but the knowledge for this area must be secure as it needed for the areas that follow.

Year	Section/Paper One	Section/Paper Two
2015	No examples	No examples
2016	18 and 19	No examples
2017	No examples	No examples
2018	15 and 16	$2 \mathrm{a}) \mathrm{ii}$
2019	23	No examples

Electrical Sources and Internal Resistance

When a power supply is part of a closed circuit, it must itself be a conductor. As all conductors have some resistance, the power supply must have its own value of resistance. The name given to the resistance of a power supply is internal resistance and it is given the symbol, r.
A power supply provides the energy for the charges which flow through the closed circuit. The energy given to a coulomb of charge flowing through the power supply is known as the e.m.f. (electromotive force) of the supply. E.m.f. is defined as the electrical potential energy given to each coulomb of charge passing through the supply. E.m.f. is normally measured in volts (V) or joules per coulomb $\left(\mathrm{JC}^{-1}\right)$ and is given the symbol, E .

A typical circuit diagram which shows e.m.f. and r is shown below.

By applying the principle of conservation of energy, the electrical potential energy available from the supply must be equal the energy "wasted" by the internal resistor added to the energy used by the load (external) resistor, R.

$$
\mathrm{E}=\text { Voltmeter reading }+ \text { Lost volts in } r
$$

The voltmeter reading is usually known as the terminal potential difference or t.p.d. and the lost volts can be calculated using Ohm's Law.

$$
\mathrm{E}=\mathrm{t} . \mathrm{p} . \mathrm{d} . \quad+\mathrm{Ir}
$$

The t.p.d. can also be calculated using Ohm's Law.

Higher - Electricity - Summary Notes

$$
E=I R+I r
$$

This equation is usually written as: -

$$
E=I(R+r)
$$

In a short circuit, which is usually created using a short thick wire, $\mathrm{R}=0$. This will result in the maximum flow of current and the above equation can be written as: -

$$
\mathrm{E}=\mathrm{Ir}
$$

In an open circuit, when no load (external) resistor is connected, no current will be flowing and no energy is wasted. This means that the e.m.f. will be equal to the t.p.d..

Example

A cell of e.m.f. 1.5 V is connected in series with a 28Ω resistor.
A voltmeter measures the voltage across the cell as 1.4 V .

Calculate:

(a) the internal resistance of the cell
(b) the current if the cell terminals are short circuited
(c) the lost volts if the external resistance is increased to 58Ω
(a)

$$
\begin{aligned}
& E=I r+I R=I r+V \\
& \text { Lost volts }=I r=E-V=1.5-1.4=0.1 \mathrm{~V} \\
& r=\frac{\text { lost volts }}{I}=\frac{0.1}{1} \\
& I=\frac{V}{R}=\frac{1.4}{28}=0.05 \mathrm{~A} \\
& r=\frac{0.1}{0.05}=2 \Omega
\end{aligned}
$$

(b)

A short circuit occurs when

$$
\begin{gathered}
R=0 \text { (no external resistance }) \\
\mathrm{E}=\mathrm{Ir} \\
1.5=\mathrm{I} \text { x } 2 \\
\mathrm{I}=0.75 \mathrm{~A}
\end{gathered}
$$

(c)

$$
\begin{gathered}
\mathrm{E}=\mathrm{I}(\mathrm{R}+\mathrm{r}) \\
1.5=\mathrm{I}(58+2) \\
1.5=\mathrm{I}(60) \\
\mathrm{I}=0.025 \mathrm{~A}
\end{gathered}
$$

Lost volts $=$ Ir
Lost volts $=0.025 \times 2$
Lost volts $=0.05 \mathrm{~V}$
When dealing with graphs of t.p.d. vs current it should be noted that the y-intercept is equal to the e.m.f. and that the gradient of the line is equal to the negative of the internal resistance.

Terminal p.d.

current

Load Matching Theory

In the following circuit the load is varied by adjusting the variable resistor. The current value is read from the ammeter and the power dissipated in the load is calculated using $P=I^{2} R$.

The experimental results show that the maximum power transfer takes place when the resistance already present in the circuit is equal to the load resistance. In the above circuit this happens when $r=R$.

Load matching or power transfer theory is often represented by plotting a graph of power vs load resistance. A typical graph is shown below.

The table below contains the details of the Past Paper examples for this area of the course. Past Papers, and their solutions, are free to download from the SQA website.

Year	Section/Paper One	Section/Paper Two
2015	No examples	10
2016	No examples	$12 \mathrm{a})$
2017	No examples	12
2018	No examples	11 a) and b)
2019	No examples	12

Capacitors

The ability of a component to store charge is known as capacitance.
A device designed to store charge is called a capacitor.
A typical capacitor consists of two conducting layers separated by an insulator.

Circuit symbol $\dashv \vdash$

Relationship between charge and p.d.

The capacitor is charged to a chosen voltage by setting the switch to A . The charge stored can be measured directly by discharging through the coulomb meter with the switch set to B. In this way pairs of readings of voltage and charge are obtained.

Charge is directly proportional to voltage.

$$
\frac{\mathrm{Q}}{\mathrm{~V}}=\text { constant }
$$

For any capacitor the ratio Q / V is a constant and is called the capacitance.

$$
\text { farad }(\mathrm{F})-\text { capacitance }=\frac{\text { charge }}{\text { voltage }} \quad \text { coulombs }(\mathrm{C})
$$

The farad is too large a unit for practical purposes.
In practice the micro farad $(\mu \mathrm{F})=1 \times 10^{-6} \mathrm{~F}$ and the nano $\operatorname{farad}(\mathrm{nF})=1 \times 10^{-9} \mathrm{~F}$ are used.

Example
A capacitor stores $4 \times 10^{-4} \mathrm{C}$ of charge when the potential difference across it is 100 V .
What is the capacitance?
$C=\frac{Q}{V}=\frac{4 \times 10^{-6}}{100}$
$=4 \mu F$

Energy Stored in a Capacitor

A charged capacitor can be used to light a bulb for a short time, therefore the capacitor must contain a store of energy. The charging of a parallel plate capacitor is considered below.

For a given capacitor the p.d. across the plates is directly proportional to the charge stored Consider a capacitor being charged to a p.d. of V and holding a charge Q .

$\mathrm{Q}=\mathrm{C} \times \mathrm{V}$ and substituting for Q and V in our equation for energy gives:

$$
\text { Energy stored in a capacitor }=\frac{1}{2} \mathrm{QV}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} \frac{\mathrm{Q}^{2}}{\mathrm{C}}
$$

Example

A $40 \mu \mathrm{~F}$ capacitor is fully charged using a 50 V supply. How much energy is stored?

$$
\begin{aligned}
\text { Energy }=\frac{1}{2} C V^{2} & =\frac{1}{2} \times 40 \times 10^{6} \times 2500 \\
& =5 \times 10^{-2} \mathrm{~J}
\end{aligned}
$$

Capacitance in a d.c. Circuit

Charging

Consider the following circuit:-

When the switch is closed the current flowing in the circuit and the voltage across the capacitor behave as shown in the graphs below.

Consider the circuit at three different times.

As soon as the switch is closed there is no charge on the capacitor the current is limited only by the resistance in the circuit and can be found using Ohm's law.

As the capacitor charges a p.d. develops across the plates which opposes the p.d. of the cell as a result the supply current decreases.

The capacitor becomes fully charged and the p.d. across the plates is equal and opposite to that across the cell and the charging current becomes zero.

Discharging

Consider this circuit when the capacitor is fully charged, switch to position B

If the cell is taken out of the circuit and the switch is set to A, the capacitor will discharge

While the capacitor is discharging the current flowing in the circuit and the voltage across the capacitor behaves as shown in the graphs below.

Although the current vs time graph has the same shape as that during charging the currents in each are flowing in opposite directions. The discharging current decreases because the p.d. across the plates decreases as charge leaves them.

Factors affecting the rate of charge/discharge of a capacitor

When a capacitor is charged to a given voltage the time taken depends on the value of the capacitor. The larger the capacitor the longer the charging time, since a larger capacitor requires more charge to raise it to the same p.d. as a smaller capacitor as $\mathrm{V}=\mathrm{Q} / \mathrm{C}$.

When a capacitor is charged to a given voltage the time taken depends on the value of the resistance in the circuit. The larger the resistance the smaller the initial charging current, hence the longer it takes to charge the capacitor as $\mathrm{Q}=\mathrm{Ixt}$

(The area under this I vs t graph $=$ charge.)

Example

The switch in the following circuit is closed at time $t=0$

Immediately after closing the switch what is:
(a) the charge on C
(b) the p.d. across C
(c) the p.d. across R
(d) the current through R.

When the capacitor is fully charged what is:
(e) the p.d. across the capacitor
(f) the charge stored.
(a) Initial charge on capacitor is zero.
(b) Initial p.d. is zero since charge is zero.
(c) p.d. is $10 \mathrm{~V}=V_{s}-V_{c}=10-0=10 \mathrm{~V}$
(d) $V=I \times R$
$10=\mathrm{I} \times 1 \times 10^{6}$
$\mathrm{I}=1 \times 10^{-5} \mathrm{~A}$
(e) 10 V
(f) $\mathrm{Q}=\mathrm{V} \times \mathrm{C}$ $Q=10 \times 1 \times 10^{-6}$ $\mathrm{Q}=1 \times 10^{-5} \mathrm{C}$

Frequency response of resistor

The following circuit is used to investigate the relationship between current and frequency in a resistive circuit.

The results show that the current flowing through a resistor is independent of the frequency of the supply.

Frequency response of capacitor

The following circuit is used to investigate the relationship between current and frequency in a capacitive circuit.

The results show that the current is directly proportional to the frequency of the supply.
To understand the relationship between the current and frequency consider the two halves of the a.c. cycle.

The electrons move back and forth around the circuit passing through the lamp and charging the capacitor one way and then the other (the electrons do not pass through the capacitor). The higher the frequency the less time there is for charge to build up on the plates of the capacitor and oppose further charges from flowing in the circuit More charge is transferred in one second so the current is larger.

Higher - Electricity - Summary Notes

Flashing indicators

A low value capacitor is charged through a resistor until it acquires sufficient voltage to fire a neon lamp. The neon lamp lights when the p.d. reaches 100 V . The capacitor is quickly discharged and the lamp goes out
 when the p.d. falls below 80 V .

Smoothing

The capacitor in this simple rectifier circuit is storing charge during the half cycle that the diode conducts. This charge is given up during the half cycle that the diode does not conduct. This helps to smooth out the waveform

The table below contains the details of the Past Paper examples for this area of the course. Past Papers, and their solutions, are free to download from the SQA website.

Year	Section/Paper One	Section/Paper Two
2015	No examples	11
2016	20	13
2017	17 and 18	13
2018	17,18 and 19	No examples
2019	No examples	13

Higher - Electricity - Summary Notes

Semiconductors and p-n junctions

The basic structure of an atom consists of a central nucleus which is orbited by electrons. These electrons are contained in discrete energy levels. No electrons exist between energy levels.

In insulators the outermost level has no electrons that are free to move. In conductors the outermost level does have electrons that are free to move which allows electrical conduction to take place.

In a solid there will be large numbers of atoms joined together. This means that it is more appropriate to look at energy bands rather than energy levels.
conduction band
band gap
valence band
filled band
conduction band
valence band
filled band

CONDUCTOR BAND DIAGRAMS
should illustrate the following theory

In conductors,

- the valence band is full
- the conduction band contains some electrons
- the band gap is small and can overlap as shown above
- there is electrical conduction (At room temperature)

A third group of materials called semiconductors exists. The band diagram for a semiconductor is similar to that of a conductor - the band gap between the valence and conduction bands is small enough to allow some electrons to occupy the conduction band.

$\frac{\text { conduction band }}{\text { band gap }}$
valence band
filled band
ONDUCTOR BAND DIAGRAM

Higher - Electricity - Summary Notes

LEDs and Band Diagrams
Band diagrams are a useful way to explain the operation of device that are made from semiconductor materials, e.g. an LED.

When a olttage is applied to the LED, the electrons in the conduction band will move towards the junction as show by the arrow. When electrons drop from the conduction band to the valence band a photon is released allowing light energy to be emitted by the LED.

However, in situations where electrons are unable to drop from the conduction band to the valence band light energy wil not be releasaed by the LED. A band diagram showing this situatuon is shown below.

A more detailed explanation of LEDs and band theory can be found between pages 205 and 212 in your textbook.

Further background reading on semi-conductor theory is contained in the next few pages of these Summary Sheets.

Higher - Electricity - Summary Notes

Bonding in semiconductors

The most commonly used semiconductors are silicon and germanium. Both these materials have a valency of four, that is they have four outer electrons available for bonding. In a pure crystal, each atom is bonded covalently to another four atoms. All of its outer electrons are bonded and therefore there are few free electrons available to conduct. This makes the resistance very large.

When an electron leaves its position in the crystal lattice, there is a space left behind that is positively charged. This lack of an electron is called a positive hole.

This hole may be filled by an electron from a neighbouring atom, which will in turn leave a hole there. Although it is technically the electron that moves, the effect is the same as if it was the hole that moved through the crystal lattice. The hole can then be thought of as the charge carrier.

In an undoped semiconductor, the number of holes is equal to the number of electrons. Current consists of drifting electrons in one direction and drifting holes in the other.

Doping

If an impurity such as arsenic (As), which has five outer electrons, is present in the crystal lattice, then four of its electrons will be used in bonding with the silicon. The fifth will be free to move about and conduct. Since the ability of the crystal to conduct is increased, the resistance of the semiconductor is therefore reduced. The addition of an impurity like this is called doping.

This type of semiconductor is called \mathbf{n}-type, since most conduction is by the movement of free electrons, which are, of course, negatively charged.

The semiconductor may also be doped with an element like indium (In), which has only three outer electrons. This produces a hole in the crystal lattice, where an electron is 'missing'.

An electron from the next atom can move into the hole created as described previously. Conduction can thus take place by the movement of positive holes. This is called a p-type semiconductor, as most conduction takes place by the movement of positively charged 'holes'.

Notes on doping

- The doping material cannot simply be added to the semiconductor crystal. It has to be grown into the lattice when the crystal is grown so that it becomes part of the atomic lattice.
- The quantity of impurity is extremely small; it may be as low as one atom in a million.
- Although p-type and n-type semiconductors have different charge carriers, they are still both overall neutral (just as metal can conduct but is normally neutral).
- Each type of semiconductor will still have small amounts of additional free electrons due to thermal ionisation.

The p-n junction diode

When a semiconductor is grown so that one half is p-type and the other half is n-type, the product is called a p-n junction diode.

Some of the free electrons from the n-type material diffuse across the junction and fill some of the holes in the p-type material. This can also be thought of as holes moving in the opposite direction to be filled by electrons. This movement means the area around the junction loses virtually all of its free charge carriers. This area is therefore known as the depletion layer.

Biasing the diode

To bias a semiconductor device means to apply a voltage to it.
A diode may be biased in two ways.

The forward-based diode

Electrons from the n-type material will be given enough energy from the battery to flow across the junction and round the above circuit in an anti-clockwise direction. This movement will result in a similar movement of holes in the clockwise direction. The diode conducts because the depletion layer has been removed.

The reverse-biased diode

In the reverse biased diode the applied potential difference increases the depletion layer. The diode will become even less likely to conduct.

The light-emitting diode

We have seen that in a forward-biased p-n junction diode, holes and electrons pass through the junction in opposite directions. Sometimes holes and electrons will meet and recombine. When this happens, energy is emitted in the form of a photon. For each recombination of electron and hole, one photon of radiation is emitted. In most semiconductors this takes the form of heat, resulting in a temperature rise. In some semiconductors such as gallium arsenic phosphide, however, the energy is emitted as light. If the junction is close to the surface of the material, this light may be able to escape. This makes what we call a Light Emitting Diode (LED). The colour of the light will depend on the materials that are used to make the semiconductor.

The Photodiode

A p-n junction in a transparent coating will react to light. The symbol for a photodiode is shown below.

circuit symbol

Photovoltaic mode

In this mode the diode has no bias voltage applied. Photons that are incident on the junction have their energy absorbed, freeing electrons and creating electron-hole pairs. A voltage is generated by the separation of the electron and hole. More intense light (more photons) will lead to more electron-hole pairs being produced and therefore a higher voltage. In fact the voltage is proportional to the light intensity.

In this mode, the photodiode will supply power to a load, e.g. a motor. This is the basis of solar cells.

Photovoltaic mode circuit

It is interesting to note that in this mode, the photodiode acts like a LED in reverse.

The table below contains the details of the Past Paper examples for this area of the course. Past Papers, and their solutions, are free to download from the SQA website.

Year	Section/Paper One	Section/Paper Two
2015	19	No examples
2016	No examples	$12 b)$ i)
2017	19	$14 \mathrm{a})$
2018	No examples	11c) and 12 a$)$ iii)
2019	24	$14 \mathrm{a})$ b) and c)

Higher - Electricity - Summary Notes

DATA SHEET
COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Magnitude of the charge on an electron Universal Constant of Gravitation Gravitational acceleration on Earth Hubble's constant	g	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \\ & \\ & 589 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
			Lasers		
			Element	Wavelength/nm	Colour
Sodium		Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{c} 9550 \\ 10590 \end{array}\right\}$ 633	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $/ \mathrm{kg} \mathrm{m}^{-3}$	Melting Point/K	Boiling Point/K
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\cdots.
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	$\cdots .9$	
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Higher - Electricity - Summary Notes

