SQA Am Answers

- 7. Е
- 8.
- C 9.
- A E 10.
- 11.
- 12. Α
- 13. С

7	a	i	A = 2u + 1d	1
			B = 1u + 2d	1
		ii	gluon	1
	Ь	i	beta decay	1

9	a	i	$\Delta m = 4 \times 1.673 \times 10^{-27} - 6.646 \times 10^{-27}$		4	
			$\Delta m = 4 \cdot 6 \times 10^{-29} (kg)$	(1)		
			$E = mc^2$	(1)		
			$E = 4 \cdot 6 \times 10^{-29} \times (3 \cdot 00 \times 10^{8})^{2}$	(1)		
			$E = 4.14 \times 10^{-12} \mathrm{J}$	(1)		Accept $4 \cdot 1 \times 10^{-12} \mathrm{J}$
		ii	1 kg hydrogen has $\frac{0 \cdot 20}{1 \cdot 673 \times 10^{-27}} = 1 \cdot 195 \times 10^{26} \text{ atoms}$	(1)	3	the division by 4 can be done in the last line
			Provides $\frac{1 \cdot 195 \times 10^{26}}{4} = 0 \cdot 2989 \times 10^{26}$ reactions	(1)		
			Releases $0.2989 \times 10^{26} \times 4.14 \times 10^{-12}$ $= 1.2 \times 10^{14} \text{ J}$ (1)	(1)		Allow 1, 1·24, 1·247 (×10 ¹⁴ J)
		iii	Large amount of energy released results in very high temperatures		1	
			OR			
			Strong magnetic fields are required containment	l for		

Ь	3	$n_{Rn}v_{Rn} = -m_a v_a$ (1) $3 \cdot 653 \times 10^{-25} \times v_{Rn} = -6 \cdot 645 \times 10^{-27} \times 1 \cdot 46 \times 10^{7}$ (1) $v_{Rn} = 2 \cdot 656 \times 10^{5} \text{m s}^{-1}$ (1)	3	OR $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ $0 = 3 \cdot 653 \times 10^{-25} \times v_{Rn} + 6 \cdot 645 \times 10^{-27} \times 1 \cdot 46 \times 10^7$ $v_{Rn} = -2.656 \times 10^5 \text{m s}^{-1}$ 1 for equation 1 for sub 1 for answer 2 velocities must have opposite directions else max 1 mark
10 a		Blue light has higher frequency/energy per photon than red light. (1) Photons of red light do not have enough energy to eject electrons (1)	2	Or similar statement comparing blue and red light Or similar statement in terms of threshold frequency or work function
8 a	i	$E_{k} = hf - hf_{0} $ $= (6 \cdot 63 \times 10^{-34} \times 7 \cdot 0 \times 10^{14}) - $ $2 \cdot 0 \times 10^{-19} $ $= 2 \cdot 6 \times 10^{-19} \text{ J} $ $W = QV \text{ or } E_{w} = QV $ $E_{w} = 1 \cdot 6 \times 10^{-19} \times 35000 $ $E_{w} = 5 \cdot 6 \times 10^{-15} \text{ J} $ (1)	2	Accept 3, 2·64, 2·641 but not 3·0
11 a		Original $E_k = \frac{1}{2} mv^2$ (1) $E_k = \frac{1}{2} (1.673 \times 10^{-27})(1.2 \times 10^6)^2$ (1) $E_k = 1.20 \times 10^{-15} (J)$ New $E_k = 1.20 \times 10^{-15} + 5.6 \times 10^{-15} (J)$ New $E_k = 6.8 \times 10^{-15} (J)$ (1) $E_k = \frac{1}{2} mv^2$ $0.8 \times 10^{-15} = \frac{1}{2} (1.673 \times 10^{-27})v^2$ $v = 2.9 \times 10^6 \text{ m s}^{-1}$ (1) Light with fixed/no phase difference. Bright fringes are produced by waves	5 1 1	$(1.20456 \times 10^{-15})$ $(6.80456 \times 10^{-15})$ Accept 3, 2.85, 2.852 but not 3.0
		meeting in phase/crest to crest/trough to trough	'	constructive interference" does not answer question (0)

	11	$\Delta x = \frac{\lambda D}{d} $ (1) $\frac{9.5 \times 10^{-3}}{4} = \frac{633 \times 10^{-9} \times 0.750}{d} $ (2) $d = 2.0 \times 10^{-4} $ m (1)	4	(1) data value of λ (1) substitution of values including division by 4 If not divided by 4 then max (1) data value of λ Accept 2, 1.999 (× 10^{-4} m)
	iii	%uncert $\Delta x = \frac{0.2 \times 100}{9.5 \times 10^{-3}} = 2.1\%$ (1) %uncert $D = \frac{0.002 \times 100}{0.750} = 0.27\%$ (1) Improve precision in measurement of	3	In order to gain final mark must have shown two calcuations of the correct form, percentage or fractional Award final mark even if D identified due to wrong
12 a	i	Δx (1) Labels (quantities and units)and scale (1) Points correctly plotted (1) Correct best fit line (1)	3	arithmetic Non-linear scale = 0 marks Allow 1/2 division tolerance in plotting points
	ii	Gradient of graph (1) Refractive index = 1.50 (1)	2	1 mark for knowing to calculate the gradient of best fit line. 1 mark for correct value.
	iii	Repeated measurements Increased range of measurements Narrower beam of light Increase the number of values within the range Protractor with more precise scale eg $\frac{1}{2}^{\circ}$ divisions	2	1 mark each up to a maximum of 2 marks. Note - do not accept 'bigger protractor'
Ь		$\sin \theta_c = \frac{1}{n} \tag{1}$ $\theta_c = \sin^{-1} \frac{1}{1 \cdot 54} \tag{1}$ $\theta_c = 40 \cdot 5^{\circ} \tag{1}$	3	Accept 40, 40·49, 40·493