Unit 3 Revision 2 Answers EQP 10. Α 11. D 12. C 13. Ε 15. 4 a 5 anywhere (1) $=\frac{3\times10^8}{656\cdot28\times10^{-9}}$ (1) $= 4.57 \times 10^{14} \text{ (Hz)}$ anywhere E = hf (1) $= 4 \cdot 57 \times 10^{14} \times 6 \cdot 63 \times 10^{-34} \quad (1)$ - this mark stands alone $= 3.03 \times 10^{-19}$ (J) transition from E_3 to E_2 (1) or $E_3 \rightarrow E_2$ E_3 — E_2 But not: OR $E_2 \rightarrow E_3$ i 12 days (1) or (0), no tolerance $=\frac{\lambda_{observed} - \lambda_{rest}}{}$ (1) anywhere 656-41-656-28 must be 656·41 (1) 656-28 $=1.9809 \times 10^{-4}$ v = czanywhere $=3.00\times10^{8}\times1.98\times10^{-4}$ (1) $= 5.94 \times 10^4 \text{ ms}^{-1}$ (1) accept: 5.9, 5.943 or 5.9426 (plus units) 4 b iii blueshift is less than redshift (1) independent marks

approach velocity is less (1)

or "the difference in

by calculation;

(1) for v less

negative sign)

wavelength for approach is less than for recession"

(1) for magnitude of less

(tolerate the dropping of the

5	a		$E_{w} = QV \tag{1}$	2	This is a 'Show' question, so
			$= 1.60 \times 10^{-19} \times 55000 $ (1)		must state formula.
			$= 8 \cdot 8 \times 10^{-15} \text{ J}$		Maximum of (1) if last line not shown.
5	Ь		Into the page or down/downwards (1)	1	Do not accept "down the page".
5	С		to ensure that the accelerating potential is in the	2	
3	ľ		correct direction for the particles motion (1)	_	
			OR the direction of the force acting on the particle is		
6	a		reversed (1)	 1	Must have waves
			waves meet out of phase or crest meets trough (1)	`	meeting/combining.
			or path difference = $(n + \frac{1}{2})\lambda$		
6	ь		λ blue light is shorter (than $λ$ red light) (1)	2	Explanation involving
٠			and	-	diffraction, 0 marks.
			$n\lambda = d\sin\theta$ (1)		
			$\mathbf{OR} \sin \theta = \frac{n\lambda}{d}$		
6	С		$n\lambda = d\sin\theta \tag{1}$	3	Accept 28, 28·23 and 28·229
			$2 \times 4.73 \times 10^{-7} = 2.00 \times 10^{-6} \sin \theta$ (1)		
8	a		$\theta = 28 \cdot 2^{\circ} \tag{1}$ $\sin \theta$	3	
			$n = \frac{\sin \theta_1}{\sin \theta_2} \tag{1}$		
			sin19°		
8	ь		$\theta_{air} = 29^{\circ} \tag{1}$	3	
•	ľ		$n = \frac{1}{\sin \theta_e} \tag{1}$		
			$1 \cdot 49 = \frac{1}{\sin \theta_c} \tag{1}$		
			$\theta_c = 42 \cdot 2^{\circ} \tag{1}$		Accept 42, 42·16, 42·155
8	С		Different frequencies/colours are refracted	1	Do not accept: — "bending"
			through different angles OR		on its own, but ignore it if follows "refraction".
			The <u>refractive index</u> is different for different frequencies/colours (1)		a correct answer followed by
			Trequencies/colours (1)		"diffract" or "defract",
10	a	 	meson (1)	2	0 marks. must have "meson" before
			quark/antiquark pair (1)		the second (1) can be
			OR made of 2 quarks		awarded.
10	Ь		$\pi^+ = \mathbf{u} + \overline{\mathbf{d}}$	1	
			$+1 = \frac{2}{3} + \overline{d}$		
			charge on anti-down = $+\frac{1}{3}$ (1)		
10	С		anti-up and down (1)	1	both required, (1) or (0) not "anti-anti-down"
10			(1)	'	not "anti-anti-down"

10	d	$t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}} \tag{1}$		3	
11	a	$= \frac{2 \cdot 6 \times 10^{-8}}{\sqrt{1 - \frac{(0 \cdot 9c)^{2}}{c^{2}}}}$ $= 6 \cdot 0 \times 10^{-8} \text{ s}$ $E_{k} = hf - hf_{0}$ (1)	(1)	3	accept: $6 \times 10^{-8} \text{ s}$ $5 \cdot 96 \times 10^{-8} \text{ s}$ $5 \cdot 965 \times 10^{-8} \text{ s}$ $E = hf$ " on its own (0)
		$= (6.63 \times 10^{-34} \times 6.74 \times 10^{14}) - 3.78 \times 10^{-20} \mathrm{J}$ $= 6.89 \times 10^{-20} \mathrm{J}$	(1) (1)		Accept: $6.9 \times 10^{-20} \text{ J}$ $6.886 \times 10^{-20} \text{ J}$ $6.8862 \times 10^{-20} \text{ J}$ Accept $6.90 \times 10^{-20} \text{ J}$ here ie using E = hf $= 4.47 \times 10^{-19} \text{ J}$
11	Ь	$E_k = \frac{1}{2}mv^2$ (1) $v^2 = \frac{2 \times 6 \cdot 89 \times 10^{-20}}{9 \cdot 11 \times 10^{-31}}$ (1) $v = 3 \cdot 89 \times 10^5 \text{ ms}^{-1}$ (1)		3	Or consistent with (a) The max number of sig figs is five, but this depends on the candidate's substitution for E.

SQP Rev H Amended

29	(a)	(i)	d = $1/200 \times 1000 = 5 \times 10^{-6}$ (m) n $\lambda = d \sin \theta$ $2 \times \lambda = 5 \times 10^{-6} \times \sin 11.8$ $\lambda = 5.11 \times 10^{-7}$ m	1 ½ ½ 1/2 1		3
		(ii)	Colour is green	1	Look up spectral line in data sheet	1
	(b)	•	Maxima are spaced further apart d and $\sin \theta$ are inversely proportional	1		2
	(c)		Dark lines are absorption lines caused by certain elements in sun absorbing particular frequencies	1		2

2013 Rev H

12. D

2014 Rev H

701-	+ VEA U				
29.	(a)	$\sin \theta_1 / \sin \theta_2 = n$	(1/2)	this mark anywhere in part(a)	2
		n = 1.615	(½)	this mark is awarded anywhere (e.g. the value might appear in the substitution)	
		$\sin \theta_1 / \sin 38^\circ = 1.615$	(½)	if there is a wrong value for <i>n</i> here, then max (½) for formula if it is shown (e.g. in first line of answer)	
		$\theta_1 = 83.9^{\circ}$	(1/2)	deduct (½) for wrong or missing	
	(b)	Refractive index larger.	(1/2)	units Must have v_g smaller, else (0) (You cannot justify a wrong answer)	2
		,			(2A)
		$v_{\text{air}} / v_{\text{glass}} = {}_{a}n_{\text{g}}$ or $n = v_{1}/v_{2}$	(1/2)		
		or "there is a greater decrease/chang speed"	e in		
		$v_{(\mathrm{glass})}$ smaller	(1)	- look for this first - it stands alone	
				Do not accept up and down arrows.	
				If a candidate uses $v = f\lambda$ and says "v is smaller because is λ smaller and f is constant on refraction" – this is wrong Physics in this situation.	
2013	I B Rev H	I	ı	Thysics in and situation.	

					alone	
					Do not	accept up and down
20:	13	Rev H	1		says "r smalle refract	indidate uses $v = f\lambda$ and v is smaller because is λ or and f is constant on ion" – this is wrong in this situation.
10.		С				
EQ						
8	a		$n = \frac{\sin \theta_1}{\sin \theta_2}$	(1)	3	3
		1	$1 \cdot 49 = \frac{\sin \theta_{air}}{\sin 19^{\circ}}$	(1)		
			$\theta_{air} = 29^{\circ}$	(1)		
8	Ь		$n = \frac{1}{\sin \theta_c}$	(1)	3	
		1	$\cdot 49 = \frac{1}{\sin \theta_c}$	(1)		
8	c	t C	$\theta_e = 42 \cdot 2^{\circ}$ Different frequencies/colouchrough different angles DR The <u>refractive index</u> is differequencies/colours (1)		1	Accept 42, 42·16, 42·155 Do not accept: — "bending" on its own, but ignore it if follows "refraction". a correct answer followed by "diffract" or "defract", 0 marks.
		. '			,	. 2

10	a	meson quark/antiquark pair OR made of 2 quarks		(1) (1)		2	must have "meson" before the second (1) can be awarded.
10	Ь	$\pi^+ = u + \overline{d}$ $+1 = \frac{2}{3} + \overline{d}$, '	1	'
10 10	c	charge on anti-down anti-up and down		(1) (1)		1	both required, (1) or (0) not "anti-anti-down"
		$t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}}$ $= \frac{2 \cdot 6 \times 10^{-8}}{1 - \frac{v^2}{c^2}}$	(1)				
		$= \frac{2 \cdot 6 \times 10^{-8}}{\sqrt{1 - \frac{(0 \cdot 9c)^2}{c^2}}}$ $= 6 \cdot 0 \times 10^{-8} \text{ s}$	(1)				accept: $6 \times 10^{-8} \text{ s}$ $5.96 \times 10^{-8} \text{ s}$ $5.965 \times 10^{-8} \text{ s}$
11	a	$E_k = hf - hf_0$ $= \left(6.63 \times 10^{-34} \times 6\right)$	·74×10 ¹⁴	4)-3·78×10 ⁻¹⁹	(1) (1)	3	" $E = hf$ " on its own (0)
		$= 6.89 \times 10^{-20} \mathrm{J}$,	(1)		Accept: 6·9 × 10 ⁻²⁰ J 6·886 × 10 ⁻²⁰ J 6·8862 × 10 ⁻²⁰ J
							Accept 6.90×10^{-20} J here ie using $E = hf$ $= 4.47 \times 10^{-19}$ J
11		$E_k = \frac{1}{2}mv^2$	(1)			3	Or consistent with (a)
		$v^2 = \frac{2 \times 6 \cdot 89 \times 10^{-20}}{9 \cdot 11 \times 10^{-31}}$					The max number of sig figs is five, but this depends on the
		$v = 3.89 \times 10^5 \text{ m s}^{-1}$	(1)				candidate's substitution for <i>E</i> .

2014 Rev H

28. (a)
$$d \sin \theta = m \lambda$$
 (½) $5.0 \times 10^{-6} \sin \theta = 3 \times 589 \times 10^{-9}$ (½) $\theta = 21^{\circ}$ (1) deduct (½) for wrong or missing units

(b) (i) Path difference = 500 - 425

Path difference = 75 mm

 $(\frac{1}{2})$

number of wavelengths 75/30

number of wavelengths 2.5

(½)

Destructive interface

(1)

Look for this first – must be this (or a demonstrated arithmetic error) for any marks.

A demonstrated arithmetic error could allow (1½) marks to be awarded.

(ii) increases

(1)

(dest.) interference no longer occurs. (1) OR /'now only one set of waves, so they cannot cancel out'/suitable diagram e.g. before:

'deconstructive'. Must be 'destructive' to gain any marks (unless there is a demonstrated arithmetic error).

do not accept "a minimum" or

If there is no calculation shown

- no marks can be awarded.

- look for this first

(2A)

2

There must be an attempt at a justification (and not wrong Physics) to get first mark.

after:

11.

nothing

2013 Rev H

28. (a)(i)

waves meet out of phase

OR

crests meet troughs

superpose, overlap (must convey meeting of the waves)

Can be shown by a diagram, e.g.

(a)(ii)

Path diff = $m\lambda$

p.d. =
$$3 \times 28 \times 10^{-3}$$

1/2

$$p.d. = 84 (mm)$$

1/2

1

distance from S_2 to P = 620 + 84

 S_2 to P = 704 mm

Can still get 1 mark for p.d. = 84 even when it is wrongly subtracted from 620.

2

1

(b)(i)				
	$m\lambda = d\sin\theta$	1/2		
	$m \times 420 \times 10^{-9} = 3.27 \times 10^{-6} \times \sin 40$	1/2	Watch sub. of sin 40. sin 80 substituted	
	m = 5	1	gives $n = 7 \cdot 7$	
	total no. of maxima = 5 above + 5 below + ce = 11	ntral 1	If any 'units' given, deduct ½ mark	3+
(b)(ii)	greater λ/wavelength	1/2	No marks for a statement	2
	when λ increases ($\sin \theta$ and) θ increases	1/2	with no justification.	(1A)
	the number of visible maxima will decrease	1		

2012 Rev H

26.	(a)		These particles cannot be broken down (into other sub-particles).	(1)	Key point: it is not that they can be used to make bigger 'things', but rather that they are not made from smaller things.	1
	(b)		For the sigma plus particle			1
			$2 \times (+\frac{2}{3}) + q_5 = +1$ $q_5 = -\frac{1}{3}$			
	(c)		Charge on strange quark = $-\frac{1}{3}$ Strong force (associated with the	(1)		1
			gluon) acts over a very short distance.	(½)		(1A)
	(4)	(i)	The gravitational force extends over very large/infinite distances. (It is deflected) downwards	(½) (1)	Not "south".	1
	(d)	(i) (ii)	-	(1)	Not south.	1
			charge	(1/2)		
			so cannot be accelerated/guided/ deflected by <u>magnetic</u> fields	(½)		
27.	(a)		$d\sin\theta = m\lambda$	(½)		2
			$d \times \sin 35.3 = 3 \times 633 \times 10^{-9}$	(1/2)		
			$d = 3.29 \times 10^{-6} \mathrm{m}$	(1)		
	(b)		Number of lines per metre $= \frac{1}{3 \cdot 29 \times 10^5}$	(½)	or consistent with answer to part (a)	1
			$=3.04\times10^{5}$	(1/2)		

			Substitution here must be to at least three significant figures			
	(c)		Difference = $(3.04) - 3.00 \times 10^5$ = 0.04×10^5		If answer to (b) is wrong, but answer to (c) is consistent – full marks	2 (2A)
			$\frac{\text{Percentage}}{\text{difference}} = \frac{0.04 \times 10^5}{3.00 \times 10^5} \times 100$	(1/2)	Could answer question by calculating 2% of 3·00 × 10 ⁵ and comparing	
			= 1.33%	(1/2)		
			Technician's value <u>does</u> agree	(1)		
29.	(a)		$n = \frac{\sin \theta_1}{\sin \theta_2}$	(½)		2
			$1.33 = \frac{\sin X}{\sin 36}$	(½)	Accept 51·42, 51·4, 51 and 50° but 51·0° - (½) off	
	(b)	(i)	X = 51° Angle of <u>refraction</u> is 90° or <u>Refracted</u> ray makes an angle of 90° with normal	(1)	Degree symbol missing - (½) off "There is no refracted ray" - zero marks "Total internal reflection is about to take place" - zero marks	1
			Refracted ray is along surface of water	1		
		(ii)	$\sin \theta_C = 1/n$	(1/2)		2
			= 1/1·33	(1/2)		
			$\theta_C = 49^{\circ}$	(1)		